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Santa Clara University
� Private Jesuit University

� First University in California 

� Total 7000 students

� School of Engineering 

� 600 undergraduates

� 600 graduates  Mostly master degree by professional working 

in Silicon Valley and 1 to 2 PhD per year

� Difficult to introduce Electric Energy on undergraduate

� However, won the 3rd place in the 2007 Solar Decathlon

� Concentrating on the graduate level only
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Application of Synchronous Generators

a) 1800 rpm at 60Hz       b) slower few rpm and many poles

The motor consists of rotor and stator separated by a small 
air gap.  The stator is made of high SiFe material 
laminated to reduce eddies
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Fig. 9-1 Synchronous generators driven by (a) steam turbines, and (b) hydraulic turbines. 
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Synchronous Generator Rotor Field

Fig. 9-6 Field winding on the rotor that is supplied by a dc current fI . 
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A synchronous machine is a rotating body, the laws of mechanics of 

rotating bodies are applicable to it.  Two or more poles



Voltage Induced

Fig. 9-7 Current direction and voltage polarities; the rotor position shown induces 

maximum ae . 
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Induced Stator Voltage due to Rotor 

Field

Fig. 9-8 Induced emf afe  due to rotating rotor field with the rotor. 
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Armature Reaction Due to Three Stator 

Currents
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Fig. 9-9 Armature reaction due to phase currents. 
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Superposition of the two Induced 

Voltages and Per-Phase 

Representation
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Fig. 9-10 Phasor diagram and per-phase equivalent circuit. 
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Power Out as a function of rotor Angle
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Fig. 9-11 Power output and synchronism. 
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Steady State Stability Limit
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Fig. 9-12 Steady state stability limit. 
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Reactive Power Control by Field 

Excitation
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Fig. 9-13 Excitation control to supply reactive power.  

{aqI

aqI


 o90

o90

aI
aI

aI

s ajX I s ajX I
s ajX I

afEafE
afE

δ δ δ
aV

aV

aV

( )a ( )b ( )c

{aqI

aqI


 o90

o90

aI
aI

aI

s ajX I s ajX I
s ajX I

afEafE
afE

δ δ δ
aV

aV

aV

( )a ( )b ( )c



Automatic Voltage Regulation (AVR)
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Fig. 9-15 Field exciter for automatic voltage regulation (AVR). 
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Representation for Steady State, 

Transient Stability and Fault Analysis 
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Fig. 9-18 Synchronous generator modeling for transient and sub-transient conditions. 
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One-Machine Infinite-Bus System

© Copyright Ned Mohan 

2006
16

Fig. 11-1 Simple one-generator system connected to an infinite bus. 
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Power-Angle Characteristic in One-

Machine Infinite-Bus System
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Fig. 11-2 Power-angle characteristics. 
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Power-Angle Characteristic in One-

Machine Infinite-Bus System

© Copyright Ned Mohan 

2006
18

Fig. 11-2 Power-angle characteristics. 
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During and immediately after the fault, state Pe (Te ) is not equal Pm (Tm )  

The rotor speed w will deviate and the corresponding angle is δm given by:

Jm (d2 δm/dt2) = Tm – Te   and multiplying by w, we get wmJm (d2 δm/dt2) = Pm – Pe 



Power-Angle Characteristics
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Fig. 11-4 Fault on one of the transmission lines. 
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Rotor Angle 

puepum

msys

m PP
dt

Hd
,,2

,

22
−=

ω
δ

Expressing Jm in term of H we get: 

This the swing equation that describes how the angle d oscillates due 

To unbalance between mech and elect powers of the generator.

Integrate this equation assuming small time increment delta t, during which

The difference in powers is constant, we get:
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Rotor-Angle Swing Following a Fault 

and a Line Taken Out
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Fig. 11-3 Rotor-angle swing in Example 11-1. 
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Rotor Oscillations After the Fault is 

Cleared
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Fig. 11-5 Rotor oscillations after the fault is cleared. 

π δ

eP

e mP P=

0
1δ mδ

2δ

C

D

Pre-fault

post-fault

Stating from eq. 11-9 we can after double integration obtain:

∂−−∂− ∫∫ ∫
∂

∂

∂

∂

dPPdPP

m

cl

pumpostfaulte

cl

pufaultepum )()( ,,

0

,,,



Critical Clearing Angle using Equal-Area 

Criterion
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Fig. 11-6 Critical clearing angle. 
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Example using Equal-Area Criterion
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Fig. 11-7 Power angle curves and equal-area criterion in Example 11-2. 
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Rotor Angle Swings in the Example 

Power System Following a Fault
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Fig. 11-10 Rotor-angle swings of 1δ  and 2δ  in Example 11-3. 
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